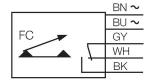

# FCST-A4P-VRX/115VAC


# Sensor de flujo de libre orientación de la serie FCST – supervisión de la velocidad de flujo salida de relé 115 VCA NA NC



| N.º de ID                                | 6870253                               |
|------------------------------------------|---------------------------------------|
| Tipo                                     | FCST-A4P-VRX/115VAC                   |
| Condiciones de montaje                   | Sensor de inmersión                   |
| Rango de detección de agua               | 1150 cm/s                             |
| Rango de detección de aceite             | 3300 cm/s                             |
| Disponibilidad                           | tipo. 8 s (215 s)                     |
| Tiempo de conexión                       | tipo. 2 s (113 s)                     |
| Gradiente de temperatura                 | ≤ 250 K/min                           |
| Temperatura del medio                    | -20+80 °C                             |
| Temperatura ambiente                     | -20+70 °C                             |
| Datos eléctricos                         |                                       |
| Voltaje de funcionamiento U <sub>B</sub> | 104126 VCA                            |
| Consumo de corriente                     | ≤ 65 mA                               |
| Salida eléctrica                         | Salida de relé, Contacto antivalente  |
| Corriente de conmutación AC              | 4 A                                   |
| Corriente de conmutación DC              | 4 A                                   |
| Tensión de conmutación AC                | 250 VAC                               |
| Tensión de conmutación DC                | 60 VDC                                |
| Potencia de conmutación máx. (AC)        | 1000 VA                               |
| Potencia máx. de conmutación DC          | 60 W                                  |
| Grado de protección                      | IP67                                  |
| Datos mecánicos                          |                                       |
| Diseño                                   | Inmersión                             |
| Material de la cubierta                  | Plástico, PBT                         |
| Material del sensor                      | acero inoxidable, 1,4571 (AISI 316Ti) |
| Junta                                    | FPM                                   |
|                                          |                                       |

- principio de trabajo termodinámico
- ■control de flujo
- punto de conmutación ajustable libremente
- ajuste a través de potenciómetro
- ■indicación visual mediante banda de LED
- salida de conmutación de relé
- ■115 VCA NA/NC
- punto de conmutación ajustable libremente
- unidad de sensor de libre orientación
- montaje de inserción mediante adaptador
- ■adaptador enroscable M18 x 1,5

### Esquema de conexiones



### Principio de Funcionamiento

Los sensores de flujo de la serie FCST trabajan conforme al principio termodinámico.

El concepto de montaje mediante inserción permite elegir la disposición de la unidad de sensor propia dentro del canal de flujo, independientemente del montaje de la conexión de procesos. Además de la ventaja de modularidad existente, este concepto facilita adicionalmente un montaje con una orientación determinada, muy importante para una supervisión del flujo fiable y precisa.

Los adaptadores enroscables están disponibles en los tamaños de rosca más comunes para el sector industrial. De este modo el sistema compuesto por unidad de sensor y adaptador enroscable permite adaptarse sin problemas a las diferentes aplicaciones. Gracias al montaje de inserción modular, el sistema también proporciona una elevada resistencia a las presiones de proceso.

Otra ventaja del concepto de montaje FCST se refleja en especial en los sensores de flujo con la electrónica de evaluación integrada. Gracias a la unidad de sensor de libre orientación el indicador LED de los aparatos compactos siempre queda en una posición bien legible, y los potenciómetros para el ajuste del punto de conmutación ó de la señal de salida quedan siempre bien accesibles.



| Conexión eléctrica             | Cables                 |
|--------------------------------|------------------------|
| Longitud del cable             | 2 m                    |
| Material de la funda del cable | PVC                    |
| Sección transversal principal  | 5 x 0.5 mm²            |
| Resistencia a la presión       | 100 bar                |
| Conexión de procesos           | Rosca hembra M18 × 1,5 |
| Pruebas/aprobaciones           |                        |
| Aprobaciones                   | cULus                  |
| Número de registro UL          | E210608                |
|                                |                        |



# Indicador LED

| LED    | Color    | Estado | Descripción                                                                                                                                                                       |
|--------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LED 1  | rojo     | on     | La corriente se ha interrumpido o bien no se ha alcanzado el valor nominal preestablecido. No está conectada la salida de conmutación 1.                                          |
| LED 2  | amarillo | on     | Se ha alcanzado el valor nominal ajustado. Está conectada la salida de conmutación 1.                                                                                             |
| LED 36 | verde    | on     | Se ha superado el valor nominal ajustado. El número de LEDs encendidos es indicativo sobre el rebasamiento relativo del valor nominal. Está conectada la salida de conmutación 1. |

## Instrucciones de montaje

| instrucciones     | •                                                                                          |  |  |
|-------------------|--------------------------------------------------------------------------------------------|--|--|
| Adaptador de      | El montaje de los sensores de flujo de libre orientación se realiza mediante un adap-      |  |  |
| montaje           | tador de montaje de tipo FCA-FCST. El adaptador se enrosca en una pieza en T o             |  |  |
|                   | manguito de soldar que, dependiendo del tipo, se sellará. Para el montaje de adapta-       |  |  |
|                   | dores con rosca cilíndrica debe utilizarse adicionalmente la junta suministrada (p. ej.    |  |  |
|                   | G1/4, G1/2, G3/4, etc.). Los adaptadores de montaje con rosca NPT se entregan por          |  |  |
|                   | lo general sin junta (p. ej. N1/2). Como junta, debe utilizarse esparto o cinta de teflón. |  |  |
|                   | A continuación se fija el sensor al adaptador mediante la tuerca de unión imperdible       |  |  |
|                   | entre la parte superior de la carcasa y la sección coniforme.                              |  |  |
| Posición de       | A fin de reducir posibles interpretaciones erróneas por magnitudes de perturbación,        |  |  |
| montaje           | se recomienda colocar el sensor a una distancia mínima de 3 x di delante y 5 x di          |  |  |
|                   | después de las curvaturas, variaciones en las secciones, válvulas, etc                     |  |  |
|                   | Si el canal o conducto de flujo no se ocupa completamente por el medio, se reco-           |  |  |
|                   | mienda montar el sensor desde abajo.                                                       |  |  |
|                   | Si no es posible descartar la formación de depósitos, se recomienda montar el              |  |  |
|                   | sensor lateralmente. Para ello deben tenerse en cuenta de que también pueden               |  |  |
|                   | formarse depósitos en las puntas del sensor, lo que influiría en el resultado de me-       |  |  |
|                   | dición. Por lo tanto se recomienda limpiar regularmente el sensor y elegir el consi-       |  |  |
|                   | guiente intervalo de mantenimiento.                                                        |  |  |
|                   | Si existe la posibilidad de que se formen burbujas, debe asegurarse durante el             |  |  |
|                   | montaje de que no se forme una bolsa de aire en la zona de la punta del sensor.            |  |  |
|                   | Si el sensor se monta en una tubería vertical, se recomienda colocar el sensor             |  |  |
|                   | dentro del conducto de subida.                                                             |  |  |
| Montaje en el     | A fin de poder contar con todo el potencial de funcionamiento del sensor, éste puede       |  |  |
| sentido del flujo | montarse en el sentido del flujo. Especialmente para la supervisión de medios de ba-       |  |  |
|                   | ja conductividad del calor como, por ejemplo, aceites, líquidos con alto contenido de      |  |  |
|                   | sólidos, medios abrasivos, etc., en procesos con cambios de temperatura rápidos (K/        |  |  |
|                   | min), así como en general con componentes con salida analógica, debe tenerse en            |  |  |
|                   | cuenta un montaje en el sentido del flujo del sensor.                                      |  |  |
|                   | Para asegurarse de que el montaje del sensor se ha realizado en el sentido del flujo,      |  |  |
|                   | el sentido efectivo de la corriente de la aplicación debe coincidir con la marca de di-    |  |  |
|                   | rección del flujo (Flow Direction) dispuesta sobre el sensor.                              |  |  |

# Indicaciones para el ajuste

| indicaciones para el ajuste |                               |                                                                                    |
|-----------------------------|-------------------------------|------------------------------------------------------------------------------------|
| Salidas de con-             | Calibración de flujo          | Montar el sensor en el canal de flujo, conectar el aparato                         |
| mutación                    | con medios en reposo          | y esperar el tiempo necesario para la disponibilidad.                              |
|                             |                               | ■Ajustar el potenciómetro S1 de manera que se encienda                             |
|                             |                               | el LED rojo. Con dos salidas de conmutación de flujo, váli-<br>do también para S2. |
|                             |                               | Al establecer el flujo debe encenderse al menos un LED verde.                      |
|                             | Calibración de flujo          | ■Montar el sensor en el canal de flujo, pre-establecer el flu-                     |
|                             | con medios en movi-<br>miento | jo y encender el aparato. Esperar el tiempo necesario para la disponibilidad.      |
|                             |                               | ■Ajustar el potenciómetro S1 de manera que se enciendan                            |
|                             |                               | una o dos LEDs verdes. Con dos salidas de conmutación                              |
|                             |                               | de flujo, válido también para S2.                                                  |
|                             |                               | ■Al interrumpirse el flujo debería encenderse el LED rojo.                         |