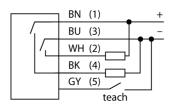


Magnetfeldsensor mit Schaltausgang Q7MB


Тур	Q7MB	
Ident-No.	3071837	
Betriebsspannung U _B	1030 VDC	
Kurzschlussschutz	ja/taktend	
Verpolungsschutz	ja	
Bereitschaftsverzug	≤ 0.5 s	
Ansprechzeit typisch	< 20 ms	

Davidama	Overden O7M	
Bauform	Quader, Q7M	
Gehäusewerkstoff	Aluminium, AL	
Elektrischer Anschluss	Kabel, 2 m, PVC	
Aderzahl	5	
Aderquerschnitt	0.5 mm ²	
Umgebungstemperatur	-40+70 °C	
Schutzart	IP68	
	IP69K	

Betriebsspannungsanzeige	LED, grün	
Schaltzustandsanzeige	LED, gelb	

- Kompakte, robuste Bauform im flachen Aluminiumgehäuse
- Schutzart IP67/IP69K
- Kabelanschluss
- Betriebsspannung 10...30 VDC
- Bipolare Schaltausgänge (PNP/NPN)
- Messbereich über Teach-In einstellbar

Anschlussbild

Funktionsprinzip

Bei diesem Sensor werden drei zueinander senkrechte Magneto-Widerstands-Transducer verwendet. Jeder Transducer erkennt Änderungen des magnetischen Feldes entlang einer Achse. Durch die Verwendung von drei Messelementen wird die maximale Sensorempfindlichkeit erreicht. Ein eisenhaltiges Objekt verändert das lokale Magnetfeld (Umgebungsmagnetfeld), welches das Objekt umgibt. Die Stärke dieser Änderung des Magnetfeldes hängt sowohl vom Objekt selbst (Größe, Form, Ausrichtung) als auch vom umgebenden Magnetfeld (Stärke und Ausrichtung) ab. Durch einfache Programmierung misst der Sensor das umgebende Magnetfeld. Ändert ein eisenhaltiges Objekt dieses Magnetfeld, wird es vom Sensor erkannt.

Tests/Zulassungen